بِسْمِ اللَّهِ الرَّحْمَنِ الرَّحِيمِ

دانلود کتاب الگو های طراحی یادگیری ماشین: راه حل هایی برای چالش های رایج در تهیه داده ها، ساخت مدل و MLOps

Machine Learning Design Patterns: Solutions to Common Challenges in Data Preparation, Model Building, and MLOps | Valliappa Lakshmanan, Sara Robinson, Michael Munn |ISBN: 1098115783, 978-1098115784, B08L8GRRBM

30,000 تومان
محصول مورد نظر موجود نمی‌باشد.
تعداد
نوع
  • {{value}}
کمی صبر کنید...

کتاب های مرتبط

سال انتشار: 2021

تعداد صفحات: 739

زبان فایل: انگلیسی

فرمت فایل: pdf + epub تبدیل شده از ایپاب

حجم فایل: 34MB

ناشر: O'Reilly

The design patterns in this book capture best practices and solutions to recurring problems in machine learning. The authors, three Google engineers, catalog proven methods to help data scientists tackle common problems throughout the ML process. These design patterns codify the experience of hundreds of experts into straightforward, approachable advice.

In this book, you will find detailed explanations of 30 patterns for data and problem representation, operationalization, repeatability, reproducibility, flexibility, explainability, and fairness. Each pattern includes a description of the problem, a variety of potential solutions, and recommendations for choosing the best technique for your situation.

You'll learn how to:

  • Identify and mitigate common challenges when training, evaluating, and deploying ML models
  • Represent data for different ML model types, including embeddings, feature crosses, and more
  • Choose the right model type for specific problems
  • Build a robust training loop that uses checkpoints, distribution strategy, and hyperparameter tuning
  • Deploy scalable ML systems that you can retrain and update to reflect new data
  • Interpret model predictions for stakeholders and ensure models are treating users fairly